COVAL EROBOTICS

From accelerometer to useful information

research and practical applications

Dr Vivi M Thorup, Lead Animal Scientist

Guzhva Seminar, Alnarp, Sweden, 31st May 2018

1

This Presentation

- About IceRobotics
- Introduction to CowAlert
- Research Examples
- Practical Applications
 - Lying Time
 - Lameness
- Future Perspectives
- Summary

IceRobotics Ltd

IceTags and IceQubes for Science

Peer-reviewed papers using IceTags or IceQubes

Species/age groups: Dairy cattle Beef cattle Calves Yaks Sheep Goats Horses Swine (in prep)

To date: 122 peer-reviewed papers

Cows in the Cloud

- Launched 2011
- On 200+ commercial farms
- 50+ million "cow days" of data from farms in the UK, Netherlands, Germany, Poland, USA, and Australia
- Cloud storage
- Heat & health issue detection
- Whole herd monitoring
- Dry cow monitoring

IceQube Output

Lying Time from IceQubes

Modified from G. Charlton

• Pasture • Cubicle housing • Straw yard

Reasons for Low Lying Time

- Overstocking (cubicles & feed space)
- Idle time (waiting to get milked or inseminated)
- Being shut out of lying areas during scraping
- Cubicles too small or uncomfortable
- Long walks
- Heat stress
- Etc

Photo: Nick J Bell, Bos International, UK $_{\rm 8}$

Lying Time in Commercial Farms

Maselyne et al (2017) Res Vet Sci 110: 1-3: 4 commercial Danish farms, 366 cows, 2 milkings/d

Arazi et al (2010) ICAR presentation: 6 commercial Israelian farms, 1810 cows, 3 milkings/d

Benchmarking across Time

Reduction from 3 to 2 milkings/d added 10% cows to optimum lying time of 10-14 h/d

The DASIE Project

Dairy Animal Sensor Integrated Engineering

- August 2014 2017
- Budget £1.7 million
- Supported by the UK government
- 4 partners, IceRobotics the lead
- Data from 5 commercial farms and 2 research herds
- 2,240 cows with IceQubes

iCEROBOTICS

Why focus on lameness?

- 25–30% of dairy cows are lame at any one time¹
- On average, farmers only notice 1 out of 4-5 lame cows²
- 3. Lame cows are in severe pain for ~3 months³

¹ Barker et al (2009) JDS 93: 932-941
² Archer et al (2010) In Practice 32: 492-504
³ Bruijnis et al (2012) Animal 6: 962-970

Lameness Reduces

- Yield: 270-857 | milk lost over a lactation
- Oestrus behaviour: mounting period shortened from 5.2 to 1.8 h
- Reproduction: first ovulatory oestrus delayed by 19 days
- Longevity: increased culling risk (HR=1.45 for moderately lame cow, HR=1.74 for very lame cow)

Bicalho et al, 2007 Journal of Dairy Science 90: 4586-91 Huxley, 2013, Livestock Science 156: 64-70 Petersson et al, 2006 Animal Reproduction Science 91: 201-214 Walker et al, 2010 Reproduction in Domestic Animals 45: 109-117

Lameness affects Behaviour

Lying time Number of steps Leg activity

And we can monitor behaviour automatically

Blackie et al, 2011 Applied Animal Behavioral Science 134: 85-91 Thorup et al, 2015 Animal 9: 1704-12 Wadsworth et al, 2016 Proc. PDF Conference, Leeuwarden, NL: 315-19

Locomotion score

Development of lameness model

- Visual mobility scores used as reference
- 6755 MS on 7 farms in 2016
- 1 of 2 trained observers
- Scale 1-5¹ (1 = perfect, 5 = severely lame)

	Visual mobility score							
	1	2	3	4	5	Total		
Number of observations	412	4810	1382	146	5	6755		

Automated Lameness Detection

Lameness Alerts on Farm

Lameness – New Alerts

last 7 days

		►> ► 100 ▼	Page 1 of			
	Alert Outcome	Alert Generated	Alert Value	Estimated Start	Cow	
See cows					×	
000 0003	Lameness	04 Dec 2017	83.6	03 Dec 2017	6282	1
ß	Lameness	04 Dec 2017	85	03 Dec 2017	348	2
<u>e</u>	Lameness	04 Dec 2017	75.8	03 Dec 2017	795	3
<u>e</u>	Lameness	04 Dec 2017	81.8	03 Dec 2017	833	4
	Lameness	03 Dec 2017	86.8	02 Dec 2017	6334	5
B	Lameness	03 Dec 2017	81	02 Dec 2017	797	6
<u>e</u>	Lameness	03 Dec 2017	90.4	02 Dec 2017	226	7
Ø	Lameness	03 Dec 2017	89.6	02 Dec 2017	34	8
Ø	Lameness	30 Nov 2017	83.8	29 Nov 2017	803	9
<u>e</u>	Lameness	30 Nov 2017	79	29 Nov 2017	689	10
<u>e</u>	Lameness	30 Nov 2017	82.6	29 Nov 2017	804	11
<u>e</u>	Lameness	30 Nov 2017	77.4	29 Nov 2017	542	12
Ø	Lameness	30 Nov 2017	77.6	29 Nov 2017	408	13
ľ	Lameness	29 Nov 2017	73.6	28 Nov 2017	3737	14
<u>e</u>	Lameness	29 Nov 2017	93.6	28 Nov 2017	2436	15

Lameness Status 4 7 0 156 See cows not evaluated for lameness 58

Detection Example (sole ulcer)

Herd Mobility Overview

Herd E - good mobility

Commercial farm (600 cows)

Lame Attention Non-lame

Herd C - severe lameness issues

Commercial farm (150 cows)

The Future - Benchmarking

Summary

- Automated lameness detection is objective and monitors every cow aroundthe-clock every day
- The ALP is capable of demonstrating beneficial effects of a painkiller on lame cows
- ✓ In the future, ALP may enable objective benchmarking across herds

Thanks for listening! Questions?

v.thorup@icerobotics.com