

### Ethanol production from steampretreated ensiled meadow grass

KRISZTINA KOVACS, PIA-MARIA BONDESSON, SVEN-ERIK SVENSSON, OLA WALLBERG

JORDBERGA, MAY 29, 2017



#### Why use grass silage for ethanol production?



- To broaden the choice of raw materials
- Excess of grasses in Sweden

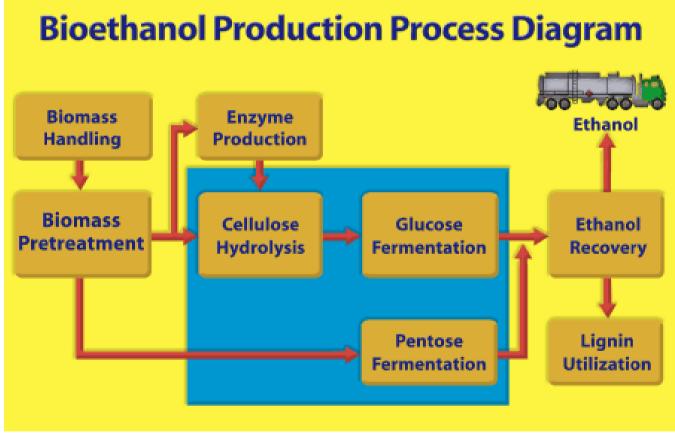
- Advantages of ensiling
  - low-cost storage method
  - preservation method
- Drawback
  - reduced ethanol potential?



#### Questions to answer in this project

• What is the ethanol potential of ensiled meadow grass (EMG) compared to that of dry meadow grass (DMG)?



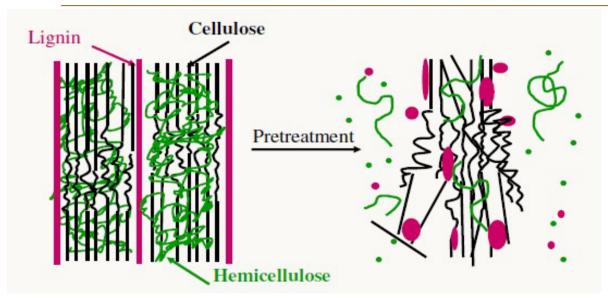



#### Questions to answer in this project

- What is the ethanol potential of ensiled meadow grass (EMG) compared to that of dry meadow grass (DMG)?
  - How to steam pretreat EMG and DMG?
  - Can EMG be pretreated without addition of extra acid?
  - Is it possible to obtain at least 40 g/L ethanol and an overall ethanol yield of 80% in the fermentation (SSF) step?



#### Cellulosic ethanol production process






INIVERSITY

Simultaneous Saccharification and Fermentation (SSF)

#### Cellulosic ethanol production process Steam pretreatment



Steam at high pressure T: 150-210°C 5-10 min Acid catalyst

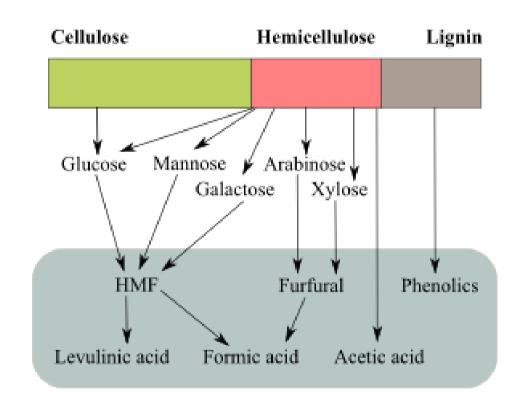


Steam-pretreated material contains potential inhibitors



### Cellulosic ethanol production process Inhibitors

Sugar degradation products


- Furfural
- HMF (5-hydroxymethylfurfural)

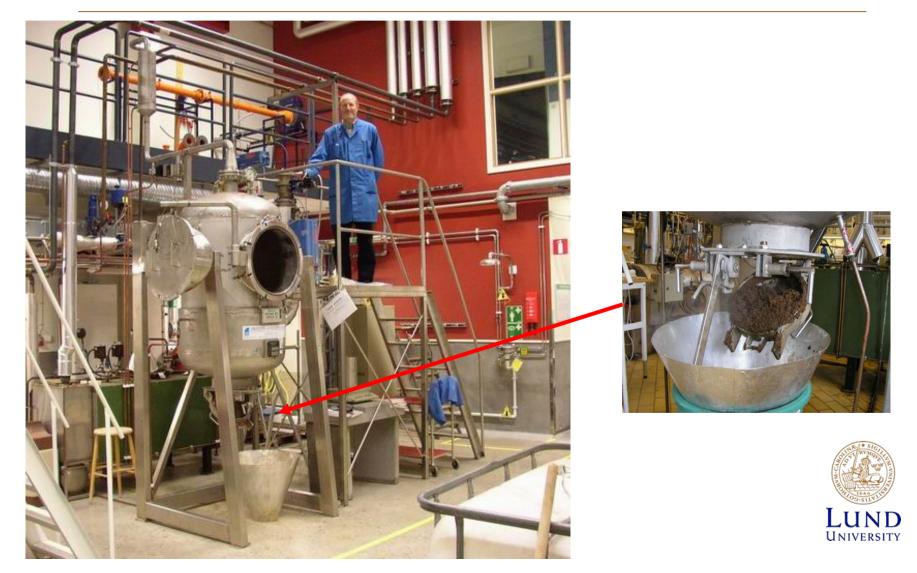
Lignin degradation products

• Phenolic compounds

Organic acids

- Acetic acid
- Formic acid
- Levulinic acid



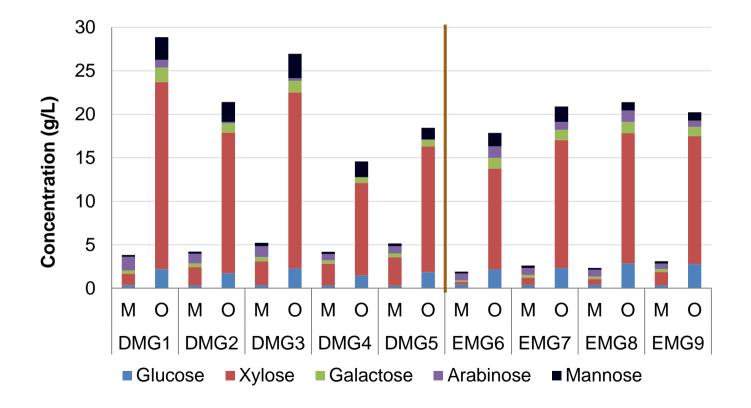



## 3 process steps to evaluate ethanol potential of DMG and EMG

- Find best steam pretreatment conditions for DMG and EMG
- 2. Enzymatic hydrolysis to evaluate pretreatment
- 3. SSF on the best pretreated materials

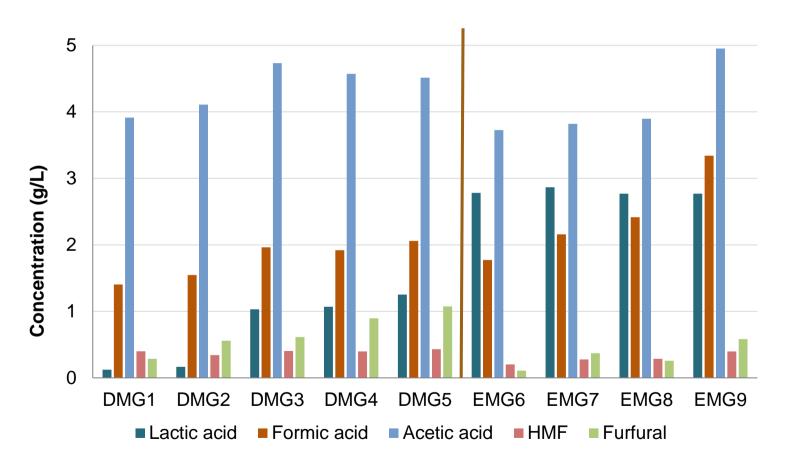


### Steam pretreatment unit at the Dept. of Chemical Engineering, LTH



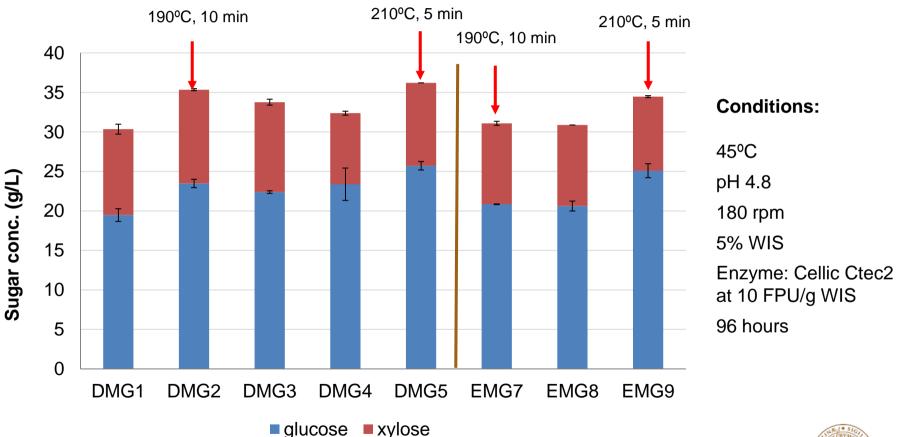

### Composition of the solid fractions of steam-pretreated DMG and EMG

|                                                | DMG1   | DMG2   | DMG3   | DMG4   | DMG5   | EMG6   | EMG7   | EMG8   | EMG9   |
|------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| catalyst                                       | 1% HAc | no cat | no cat | no cat | no cat |
| T (oC)                                         | 190    | 190    | 200    | 200    | 210    | 190    | 190    | 200    | 210    |
| t (min)                                        | 5      | 10     | 5      | 10     | 5      | 5      | 10     | 5      | 5      |
| рН                                             | 4.0    | 3.9    | 3.8    | 3.7    | 4.0    | 4.5    | 4.3    | 4.3    | 4.2    |
| WIS slurry (%)                                 | 12.8   | 8.9    | 10.6   | 8.4    | 8.7    | 10.0   | 7.6    | 8.1    | 7.9    |
| WIS recovery (%)                               | 71.6   | 57.2   | 59.0   | 58.9   | 55.5   | 63.4   | 55.1   | 55.9   | 54.3   |
|                                                |        |        |        |        |        |        |        |        |        |
| Composition of the solid fraction (in % of DM) |        |        |        |        |        | _      | -      |        |        |
|                                                | DMG1   | DMG2   | DMG3   | DMG4   | DMG5   | EMG6   | EMG7   | EMG8   | EMG9   |
| Glucan                                         | 51.9   | 54.0   | 54.3   | 55.3   | 59.3   | 48.2   | 52.2   | 54.6   | 57.1   |
| Xylan                                          | 9.7    | 6.9    | 6.3    | 4.9    | 4.3    | 16.6   | 10.5   | 10.5   | 5.1    |
| Galactan                                       | 0.2    | 0.1    | 0.1    | 0.0    | 0.3    | 0.4    | 0.2    | 0.6    | 0.4    |
| Arabinan                                       | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.6    | 0.0    | 0.0    | 0.0    |
| Mannan                                         | 2.8    | 2.4    | 2.3    | 2.4    | 1.5    | 3.0    | 2.4    | 2.0    | 1.6    |
| Lignin                                         | 29.3   | 31.2   | 31.7   | 33.0   | 31.4   | 25.1   | 28.3   | 27.1   | 30.6   |
| Ash                                            | 1.1    | 1.2    | 1.3    | 0.8    | 2.0    | 2.2    | 3.2    | 2.9    | 4.3    |
| Total                                          | 94.9   | 95.8   | 96.0   | 96.4   | 98.8   | 96.0   | 96.8   | 97.7   | 99.0   |




## Sugar content in the liquid fractions of steam-pretreated DMG and EMG






# Concentrations of organic acids and sugar-degradation products in the liquids



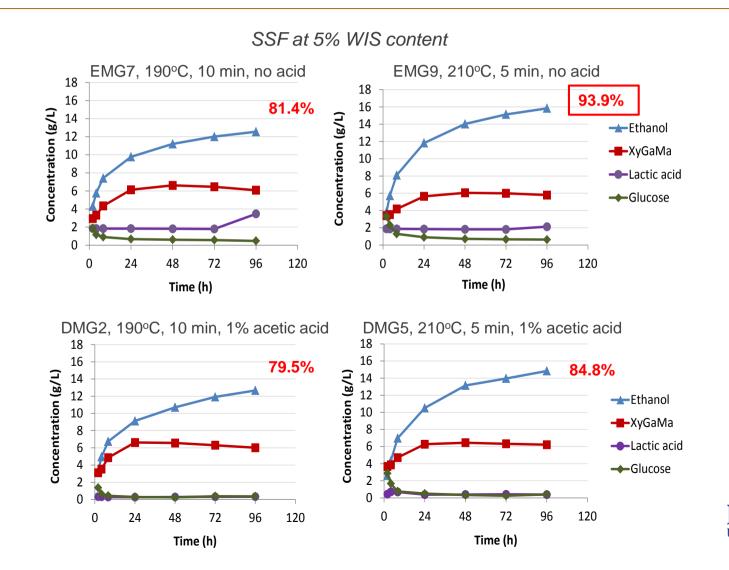


### Enzymatic hydrolysis of steampretreated DMG and EMG



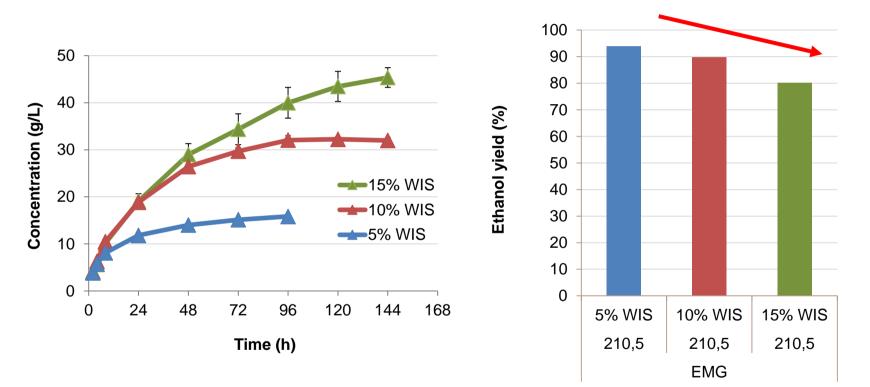


### Simultaneous Saccharification and Fermentation of DMG and EMG




#### **Conditions:**

35°C, pH 4.8, 300 rpm, 96 hours 5% WIS Enzyme: Cellic Ctec2 at 10 FPU/g WIS Yeast: Ethanol Red at 5 g/L




### Higher ethanol concentrations on EMG Pretreatment at 210°C is better



IVERSITY

### Increasing solids concentration in SSF of EMG to obtain at least 40 g/L ethanol



At 15% WIS:

45.4 g/L ethanol

80.2% yield in SSF

BUT: longer residence time needed



## Comparison of ethanol potential of DMG and EMG - Conclusions

• Better fermentability of steam-pretreated EMG than DMG

|                                    | DMG          | EMG          |
|------------------------------------|--------------|--------------|
| Highest overall<br>ethanol yield   | 156 g/kg DMG | 163 g/kg EMG |
| Assuming 5% DM<br>loss in ensiling |              | 155 g/kg DMG |
| Assuming 10% DM loss in ensiling   |              | 147 g/kg DMG |

- Ethanol potential of EMG is very similar to that of DMG
- Acid impregnation not needed for EMG, which is advantageous from an economical perspective





### LUND UNIVERSITY