Department of Crop Production Ecology

Modellering av renkavle - ett verktyg för rådgivningen och jordbrukaren

Alexander Menegat

In our case a model is a mathematical approximation of reality:

What is a model?

In our case a model is a mathematical approximation of reality:

In our case a model is a mathematical approximation of reality:

What a model is not?

A model is not a 1:1 picture of reality. It is rather a conceptualization of a system.

A model is not a 1:1 picture of reality. It is rather a conceptualization of a system.

Models are always incomplete and often even false.

...but even a false model can lead to useful insights about a system.

1st step: definition of the life cycle (observation step)

- What are the most sensitive parts in the life cycle?
- How weed control measures affect weed population dynamics (long-term).
- Understanding of the complex interaction of various weed control measures (strategy evaluation).
- Building of hypotheses for target oriented field experiments.

Quantifying the dormancy of *Alopecurus myosuroides* seeds produced by plants exposed to different soil moisture and temperature regimes

A J SWAIN*, Z S HUGHES*, S K COOK† & S R MOSS*

*Plant and Invertebrate Ecology Division, Rothamsted Research, Harpenden, Hertfordshire, UK, and †ADAS Boxworth, Boxworth, Cambridgeshire, UK

Received 13 December 2005 Revised version accepted 12 July 2006

Sampling site	Year		ciated SMHI weather station		
Alberta	2015	Lund	53430		
Brönnestad	2015	Hörby A	53530		
Gylle	2015	Sturup	53300		
Jordberga	2015	Sturup	53300		
Klagstorp	2015	Sturup	53300		
Lönhult	2015	Gladhammar A	76420		
Mossheddinge	2015	Lund	53430		
Rosengren	2015	Lund	53430		
Svedberga	2015	Lund	53430		
Trelleborg	2015	Sturup	53300		
Vejbygården	2015	Barkåkra	62180		
Örup	2015	Lund	53430		
Esarp	2016	Sturup	53300		
Gunnarstorp	2016	Helsingborg	62040		
Heagård	2016	Halmstad	62400		
Jordberga	2016	Sturup	53300		
Klagstorp	2016	Sturup	53300		
Kongsmarken	2016	Sturup	53300		
Krapperup	2016	Barkåkra	62180		
Lydinge	2016	Helsingborg	62040		
Ormastorp	2016	Helsingborg	62040		
Ullriksfält	2016	Barkåkra	62180		
Viarp	2016	Helsingborg	62040		

Water availability: comparison 2015/2016 (Klagstorp)

Water availability: comparison 2015/2016 (Klagstorp)

Year	Proportion of dormant seeds (%)	10-30% seed shed reached (day)	Precipitation sum (mm)	Mean temperature (°C)	Temperature sum (°C)	Number of days with mean SMP < PWP (0-30 cm soil depth)
2015	68	199	100	15	833	1
2016	55 (-13%)	189 (-10 days)	111 (+11mm)	16	911 (+78°C)	15 (+14 days)

2015: 12 sampling sites 2016: 11 sampling sites

Best regression temperature- and precipitation sum

Best regression temperature- and precipitation sum

Summary:

- ➤ Only the upper soil layer (2-10 cm) is relevant in terms of soil moisture.
- ➤ A combination of soil moisture and temperature sum seems to be favourable for prediction accuracy (R²=0.678).

Next steps

Long term effect of soil tillage measures on population development under different initial dormancy levels.

Independent sub-models

- 1. Dormancy forecast
- 2. Vertical movement of seeds due to tillage operations
- 3. Seedling emergence
- 4. Seed production

...and a interaction model where all sub-models are combined.

Dissemination of the model

