

Yield Loss

- Occasionally at the seedling stage
- Mainly via lodging and stem damage after flowering
- Catastrophic in some countries
- A major yield robber in others
 - over 50 million euros per season in UK (Fitt et al 2006)

SEED YOUR SUCCESS

Control Strategies

- Cultural Aim to reduce inoculum level (from crop debris)
 - Longer rotations
 - Burying trash very quickly after harvest
 - But might not fit well with overall farm strategy
- Fungicides
 - Reduce amount of disease in autumn/early spring (WOSR)
 - May be difficult to get timing right
 - Not the easiest time of year to spray
 - Chemical 'toolbox' is reducing due to regulation/pathogen resistance
- Disease resistant varieties
- Combinations of the above

SEED YOUR SUCCESS

Varietal Resistance

- All WOSR varieties carry some base level of resistance
 - Seen if you compare with (for example) Chinese material
 - Total catastrophe through Phoma in WOSR in Northern Europe is probably unlikely
 - But quite severe yield loss is relatively common
- Breeding can definitely improve on the base level
 - Single gene resistance
 - Improved quantitative resistance
 - Combination of both

SEED YOUR SUCCESS

Single Gene Resistance

- 9 avirulence genes identified in L. Maculans
 - (AvRLm1 AvRLm9)
- Corresponding resistance genes (Rlm1 Rlm9) discovered in Brassica napus (OSR)
- These genes provided good (total) resistance for a while but then broke down
 - Pathogen evolves to lose the AvRlmx 'signature'
 - Becomes avRLmx and is no longer 'recognised' by the plant
- However one of these genes, RLm7 has behaved differently and has lasted much longer
 - Some leaf spotting but still strong stem canker resistance
 - Maybe avRLm7 pathogens are less 'fit'?

SEED YOUR SUCCESS

Quantitative Resistance

- Characteristics of the plant other than direct resistance mechanisms are responsible for disease tolerance/avoidance
- Many possible examples with regard to phoma
 - Longer leaf petioles (pathogen has further to travel to stem)
 - More lignified stem structure
 - Thicker leaf epidermis
 - More rapid leaf turnover
 - Etc. Etc.

SEED YOUR SUCCESS

Hybrid Varieties can have advantages in phoma resistance

- Can combine single gene resistance (e.g. RLm7) from one parent with good quantitative resistance from the other, whilst maintaining yield and other characteristics
 - Shown to help protect the single gene source (Brun et al 2009)
- Vigorous hybrid growth also means that the pathogen can struggle to get to the stem from the leaf infection

SEED YOUR SUCCESS

Conclusion

- Phoma is a major threat to OSR growers in Northern Europe
- Combining varietal resistance with good management practices can greatly reduce this risk

